5 research outputs found

    Fast Iris Localization Based on Image Algebra and Morphological Operations

    Get PDF
    تحديد منطقة القزحية هي العملية الأكثر أهمية في نظام التعرف على القزحية التي تكون خاضعة وبشدة لتأثيرات البيئة,  وبالتالي، فقد تم اقتراح طريقة جديدة  لتحديد الحدود الداخلية والخارجية للقزحية. الفائدة الرئيسية من استخدام العمليات الحسابية للصور هي أنها طريقة بسيطة وسريعة وان هذه المميزات يتم استخدامها ودمجها مع العمليات المورفولوجية في تصميم الخوارزمية المقترحة. خوارزمية تحديد القزحية المقترحة قد صممت مع الأخذ بعين الاعتبار الملامح الشكلية لصورة قزحية العين مثل منطقة الضوضاء الموجودة في أجزاء مختلفة من صورة العين (مثل الانعكاسات الضوئية والتركيز والقزحية المرئية بصورة جزئية). النتائج التجريبية لتحديد القزحية تم إجراؤها على مجموعة من صور قزحية العين تتكون من 756 صورة تنتمي إلى قاعدة بيانات معهد العلوم الأكاديمي الصيني للأتمتة (CASIA V-1)، و450 صورة تنتمي إلى قاعدة بيانات جامعة الوسائط المتعددة (MMU V-1), تشير النتائج إلى تحقيق مستوى عالٍ من الدقة باستخدام التقنية المقترحة. علاوة على ذلك، فإن نتائج المقارنة مع خوارزميات تحديد القزحية الحديثة تعزز من دقة عملية فصل القزحية بشكل كبير اضافة الى كونها أكثر كفاءة من الناحية الحسابية.The localization of the iris is the most significant factor in biometrics of the iris, which traditionally assumes strictly controlled environments. The proposed method includes the pupillary and limbic iris boundaries localization. A primary advantage of image arithmetic operations is that the process is straightforward and therefore fast, these characteristics are employed and combined with the morphological operators in the designing of the proposed algorithm. The proposed algorithm takes into account the noise area which is found in various parts of the eye image such as light reflections, focus, and small visible iris. The experimental results are conducted on a collection of iris images consist of 756 images belong to Chinese Academy of Sciences Institute of Automation (CASIA V-1) and 450 images belong to Multi Media University (MMU V-1) databases.  The results indicate a high level of accuracy using the proposed technique. Moreover, the comparison results with the state-of-the-art iris localization algorithms expose considerable improvement in segmentation accuracy while being computationally more efficient

    Reversible Multiple Image Secret Sharing Using Discrete Haar Wavelet Transform

    Get PDF
    Multiple Secret Image Sharing scheme is a protected approach to transmit more than one secret image over a communication channel. Conventionally, only single secret image is shared over a channel at a time. But as technology grew up, there is a need to share more than one secret image. A fast (r, n) multiple secret image sharing scheme based on discrete haar wavelet transform has been proposed to encrypt m secret images into n noisy images that are stored over different servers. To recover m secret images r noise images are required. Haar Discrete Wavelet Transform (DWT) is employed as reduction process of each secret image to its quarter size (i.e., LL subband). The LL subbands for all secrets have been combined in one secret that will be split later into r subblocks randomly using proposed high pseudo random generator. Finally, a developed (r, n) threshold multiple image secret sharing based one linear system has been used to generate unrelated shares. The experimental results showed that the generated shares are more secure and unrelated. The size reductions of generated shares were 1:4r of the size of each of original image. Also, the randomness test shows a good degree of randomness and security

    Color image encryption based on chaotic shit keying with lossless compression

    Get PDF
    In order to protect valuable data from undesirable readers or against illegal reproduction and modifications, there have been various data encryption techniques. Many methods are developed to perform image encryption. The use of chaotic map for image encryption is very effective, since it increase the security, due to its random behavior. The most attractive feature of deterministic chaotic systems is he extremely unexpected and random-look nature of chaotic signals that may lead to novel applications. A novel image encryption algorithm based on compression and hyper chaotic map techniques is proposed. Firstly the image is decomposed into three subbands R, G, and B then each band is compressed using lossless technique. The generated chaotic sequences from the 3D chaotic system are employed to code the compressed results by employing the idea of chaotic shift encoding (CSK) modulation to encode the three bands to generate the encrypted image. The experiments show that the proposed method give good results in term of security, feasibility, and robustness

    Extended of TEA: A 256 bits block cipher algorithm for image encryption

    Get PDF
    This paper introduces an effective image encryption approach that merges a chaotic map and polynomial with a block cipher. According to this scheme, there are three levels of encryption. In the first level, pixel positions of the image are scuffled into blocks randomly based on a chaotic map. In the second level, the polynomials are constructed by taking N unused pixels from the permuted blocks as polynomial coefficients. Finally, the third level a proposed secret-key block cipher called extended of tiny encryption algorithm (ETEA) is used. The proposed ETEA algorithm increased the block size from 64-bit to 256-bit by using F-function in type three Feistel network design. The key schedule generation is very straightforward through admixture the entire major subjects in the identical manner for every round. The proposed ETEA algorithm is word-oriented, where wholly internal operations are executed on words of 32 bits. So, it is possible to efficiently implement the proposed algorithm on smart cards. The results of the experimental demonstration that the proposed encryption algorithm for all methods are efficient and have high security features through statistical analysis using histograms, correlation, entropy, randomness tests, and the avalanche effect

    Design and implementation of proposed 320 bit RC6-cascaded encryption/decryption cores on altera FPGA

    Get PDF
    This paper attempts to build up a simple, strong and secure cryptographic algorithm. The result of such an attempt is “RC6-Cascade” which is 320-bits RC6 like block cipher. The key can be any length up to 256 bytes. It is a secret-key block cipher with precise characteristics of RC6 algorithm using another overall structure design. In RC6-Cascade, cascading of F-functions will be used instead of rounds. Moreover, the paper investigates a hardware design to efficiently implement the proposed RC6-Cascade block cipher core on field programmable gate array (FPGA). An efficient compact iterative architecture will be designed for the F-function of the above algorithm. The goal is to design a more secure algorithm and present a very fast encryption core for low cost and small size applications
    corecore